

COLLOIDS

Greek – glue like

Colloids are dispersions where in **dispersed particles** are distributed uniformly in the **dispersion medium**.

Dispersed particles size Small- less than 0.01µ Medium- 5-1µ Large- 10-1000µ

Def:

Colloids systems are defined as those polyphasic systems where at least one dimension of the dispersed phase measures between 10-100A⁰ to a few micrometers.

Characteristics of dispersed phase:

1.Particle size:

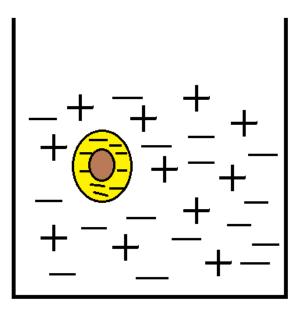
This influence colour of dispersion. Wavelength of light absorbed α 1/ Radius (small wavelength)**VIBGYOR** (large wavelength)

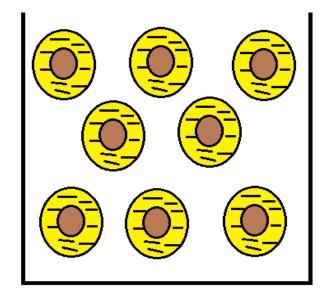
2.Particle shape:

Depends on the preparation method and affinity of dispersion medium

This influence colour of dispersion.

Shapes- spherical, rods, flakes, threads, ellipsoidal. Gold particles- spherical (red), disc (blue).


3. Surface area:


Particle size small- large surface area Effective catalyst, enhance solubility.

4. Surface charge:

Positive (+)= gelatin, aluminum. Negative (-) = acacia, tragacanth. Particle interior neutral, surface charged.
Surface charge leads to stability of

colloids because of repulsions.

- Pharmaceutical applications:
- 1. Therapy
- 2. Absorption & toxicity
- 3. Solubility
- 4. Stability
- 5. Targeting of drug to specific organ.

1. Therapy:

Small size – good absorption- better action- treatment. Silver-germicidal Copper-anticancer Mercury- anti syphilis

2.Absorption & toxicity

Sulfur deficiency treatment Colloidal sulfur- small size particles- faster absorptionexcess sulfur concentration in blood- toxicity

3.Solubility

Insoluble drug → Colloidal system+ Surfactants (sulfonamides, (micellar solublization) phenobarbitones)

4. Stability:

Colloidal systems are used as pharmaceutical excipients, vehicles, carriers, product components. *Dispersion* of surfactants → Association colloids – increase stability of drug (liquid dosage form) *Dispersion* of macromolecules (gelatin), → Tablet Coating synthetic polymers (HPMC)

5. Targeting of drug to specific organ.

Drug entrapped liposomes, niosomes, nanoparticles, microemulsions targeted to liver, spleen.

Official preparations;

- 1. Iron drxtran inj (B.P)- anemia treatment
- 2. Iron sorbitol inj (B.P)- sorbitol, dextran, citric acid, iron.

Classification of colloidal dispersion:

- 1.Basing on charge- (+), (-)
- 2.Basing on state of matter Solid, Liquid, Gas.
- 3.Interaction of dispersed particles with dispersion mediumlyophilic, lyophobic, association colloids.

Dispersed particles	Dispersion medium	Example
Solid	Solid	ZnO tooth paste
Solid	Liquid	Bentonite magma sols
Solid	Gas	Solid aerosols
Liquid	Solid	Oil in hydrophilic ointment
Liquid	Liquid	Castor oil-water emulsion
Liquid	Gas	Liquid aerosols
Gas	Solid	Solid foams
Gas	Liquid	Carbonated beverages
Gas	Gas	

Based on interactions;

- I) <u>Lyophilic colloids: (solvent loving)</u>
- Particles have greater affinity to dispersion medium (solvent). Solvent forms a **sheath** on particle- **thermodynamically stable** dispersion.
- Lyophilic colloid preparation and purification is easy.
- Lyophilic colloid prepared with/without charge.
- Acacia colloid (+) \rightarrow Iso-electric point \rightarrow Neutral charge

Dispersed particles

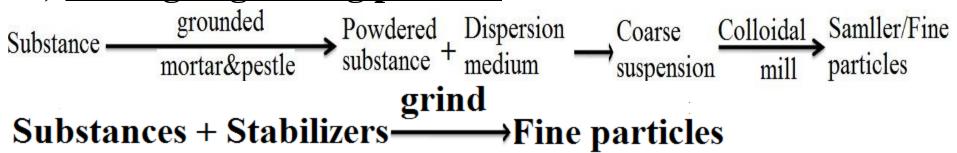
- a)Hydrophilic- acacia, gelatin (water)
- b)Lipophilic- rubber, polystyrene (organic solvents)

Dispersion medium

- a)Hydrophilic water
- b)Lyophilic- organic solvents (benzene, ethylmethyl ketone)

II) Lyophobic colloids: (solvent hating)

Particles have <u>less affinity</u> to dispersion medium (solvent). Solvent do not form a sheath on particle- thermodynamically **unstable** dispersion.


Dispersed particles- same charges- repulsions- uniform

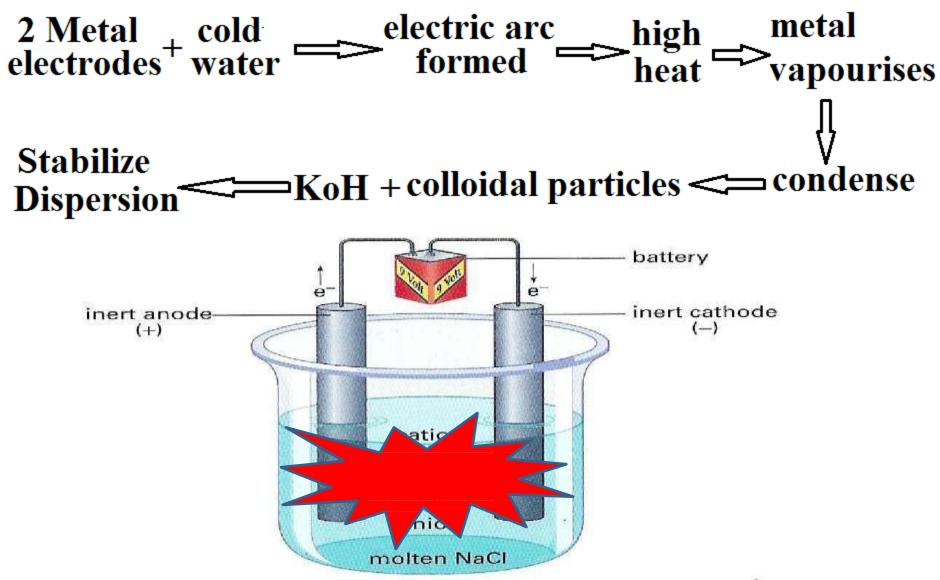
distribution.

Preparation methods:

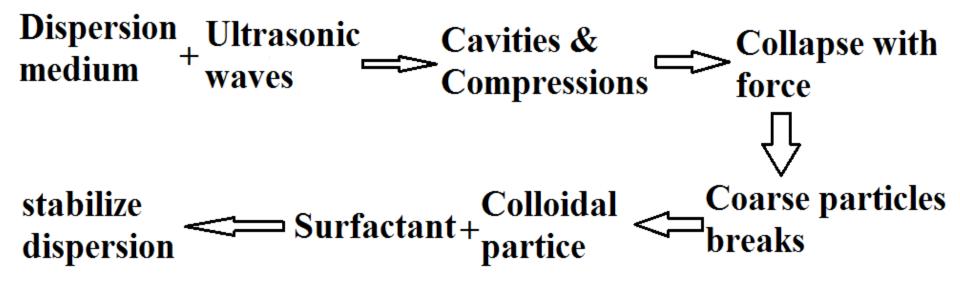
1. Dispersion method	2. Condensation method
Milling & grinding process	Addition of non-solvent
Peptization	Chemical methods
Eletric arc method	
Ultrasonic treatment	

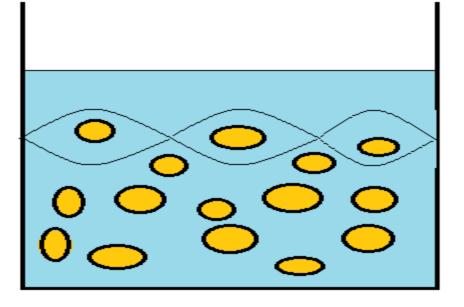
1. Dispersion method (size decreasing) a) <u>Milling & grinding process:</u>

b) Peptization:


Defined as a process of breaking aggregates/ secondary particles in to particles of colloidal size.

Peptizing agent: compound that promotes dispersibility of solids with out entering in to combination with them.


- Ex: glycerin, sugar, lactose, citric acid.
- Peptization is done by
- 1.Removal of flocculating agent/ electrolyte.
- 2.Addition of deflocculating agent/ surfactant.


C) Electric arc method:

Method suitable for metals- silver, gold.

d) Ultrasonic treatment:

2. Condensation method (size increasing)

Particles of sub colloidal range aggregate/condense to colloidal range.

Principle:

In supersaturated solution, solute precipitates/ crystallizes in

- 2 steps- a. nucleation,
- b. growth of nuclei
- Nuclei is cluster./ group of ions/ molecules.
- A stable nuclei attract ions/molecules on surface, size grows
- to colloidal range.

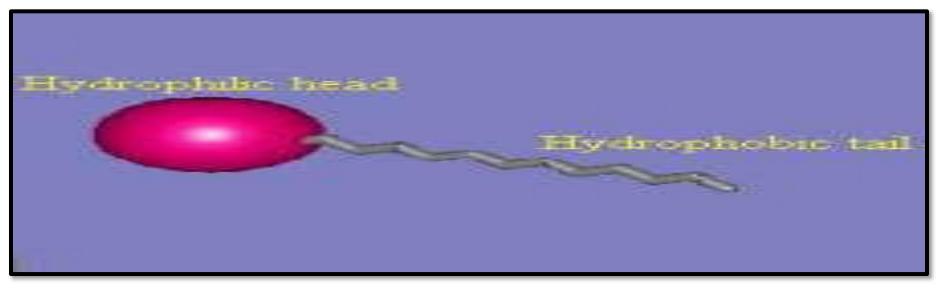
a) Addition of non-solvent:

Sulfur soluble in alcohol (solvent),

insoluble in water (non-solvent)

Concentrated + excess → sulfur → size grows → colloidal solution of water precipitates range. sulfur in alcohol

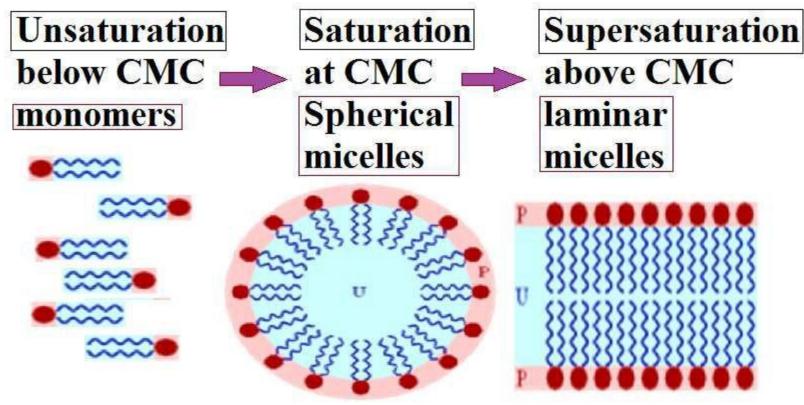
b) Chemical methods:


Chemical reactions of inorganic substances in lyophobic sols form colloids.

- 1. Gold, silver, platinum-reduction
- 2. Sulfur-oxidation
- 3. Ferric oxide-hydrolysis

4. Arsenic oxide-double decomposition.

II) Association colloids/ Amphiphiles:

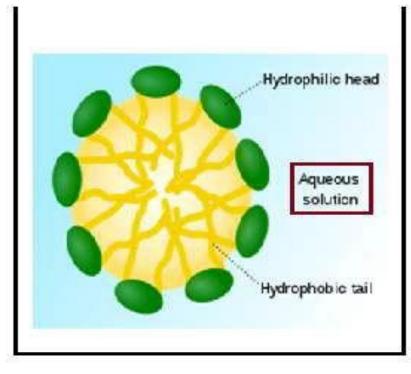

Amphiphiles are molecules/ions having affinity for both polar and non-polar solvents.

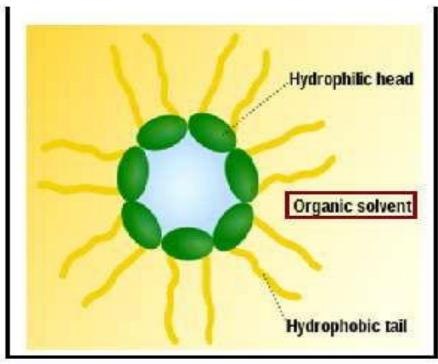
Amphiphiles + water In low conc. \rightarrow moments of sub-colloidal size In CMC conc. \rightarrow MICELLES of colloidal size (50 A⁰)

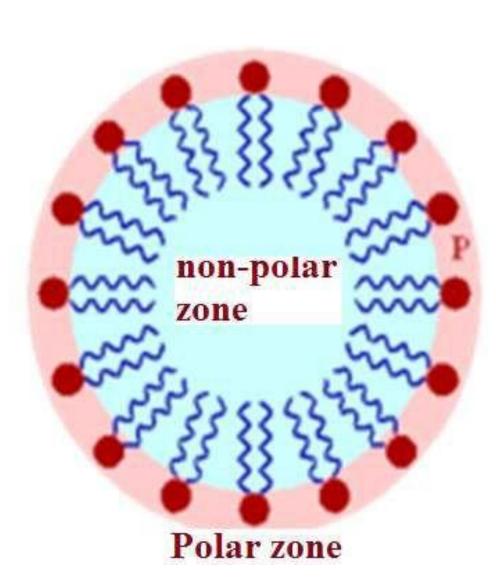
CMC (Critical Micellar Concentration):

It is defined as a concentration range of surfactants at which micelles start forming. CMC is concentration range. **Mechanism:**

SLS has CMC range of 1-2% W/W


Krafft point (Kt):


This is defined as the temperature at which solubility of surfactant is equal to the CMC.


Surfactant Applications:

1. Prevent hydrolytic/ oxidative decomposition.

2.Improving solubility of poorly soluble drugs by **micellar** solublization.

Non-ionic surfactant **TWEEN-80** 1.Benzene, toulenenon polar –dissolve in core/ center near tails. 2.Phenol, salicylic acid- semi polar benzene ring dissolve in center, hydrocarbon chain dissolve near heads. 3.P-hydroxy benzoic acid – polar dissolves near heads

Formulation factors:

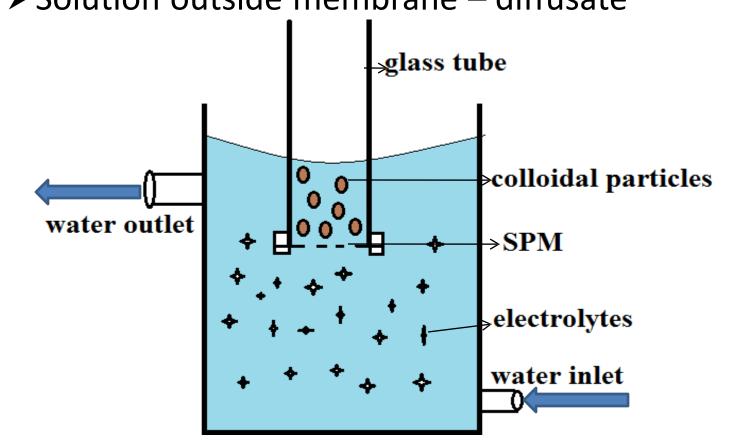
1.Type of surfactant:

- a. non-ionic \rightarrow internal & external use.
- b. ionic \rightarrow only external use. Internal use-toxicity.

2.Concentration of surfactant:

a. Low conc. → micelles not formed, drug precipitates.
b. at CMC conc. → Micelles formed, improve solubility, absorption etc.,

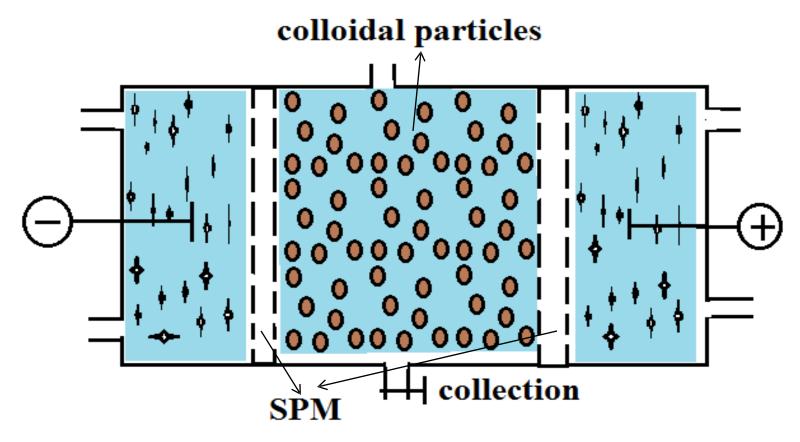
c. High conc. → drug tightly binded by laminar micelles, reduced absorption, action.


Surfactant high conc. cause toxicity.

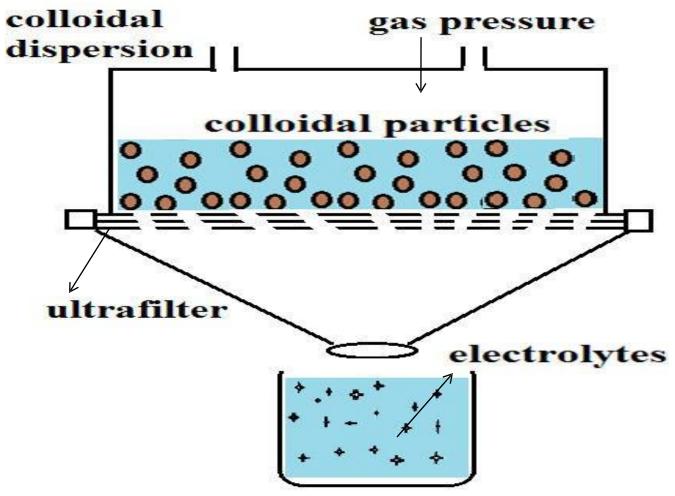
PURIFICATION OF COLLOIDAL DISPERSION:

- 1. Dialysis
- 2. Electrodialysis
- 3. Ultrafiltration
- a)Colloidal dispersions + electrolytes → Stable colloids
 b)Stable colloids have dispersed particles, electrolytes,
- dispersion medium.
- c)Purification is separation of dispersed particles only.

1.Dialysis:


Semi permeable membrane has fine pore.
Ions/small molecules – pass
Colloidal particles (large)- retained.
➢ Solution inside membrane – dialysate
➢ Solution outside membrane – diffusate

2. Electrodialysis:

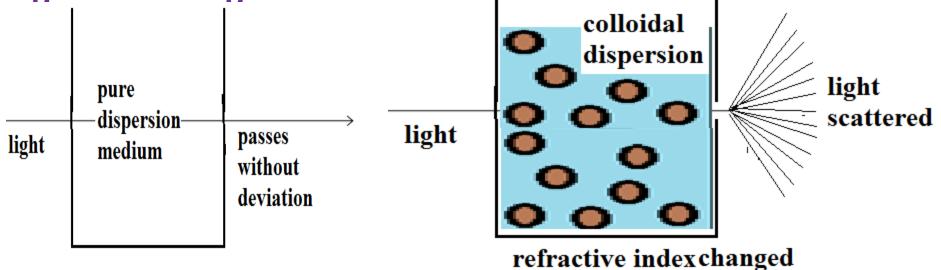

➤This is similar to diffusion but enhanced by applying potential difference.

≻Non-ionic impurities can not be separated.

3. Ultrafiltration:

Ordinary filter paper has large pore size – not useful
 Ordinary filter paper impregnated with collodion has small pores – separate colloid particles.

Pharmaceutical applications of purification:


- 1.Membrane filters & artificial membranes are used as models to explain principle of diffusion of drug through natural membranes.
- 2.Drug-protein binding effects can be studied.
- 3. Principle in haemodialysis technique.

PROPERTIES OF COLLOIDS:

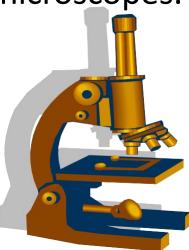
- 1. Optical properties
- 2. Kinetic properties
- 3. Electrical properties

1. Optical properties:

Useful to measure size, shape, structure & molecular weight of colloids. Includes light scattering & turbidity. Light scattering:

Mechanism:

Light + dispersed particle → polarize atoms/molecules → dipoles → Emmitt light in all directions → light scattering

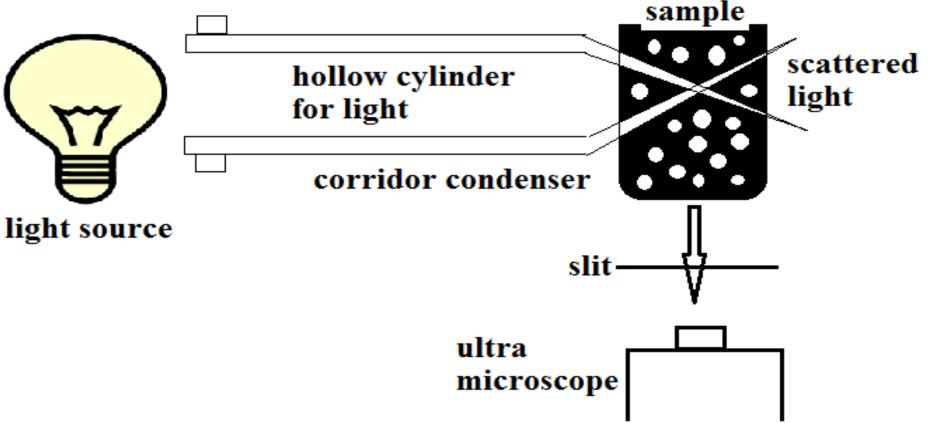

Tyndall effect:

Light scattering is clearly visible in **dark back ground** at **perpendicular angle**.

narrow beam tyndall beam

Light scattering studied in light, ultra, electron microscopes.

- 1. Light microscope:
- Source of radiation visible light
- 2 separate particles are visible if distance between them is 0.2μ.
- Not suitable for colloidal particles.



2. Ultra microscope (dark-field microscope):

➤Used to observe tyndall effect,

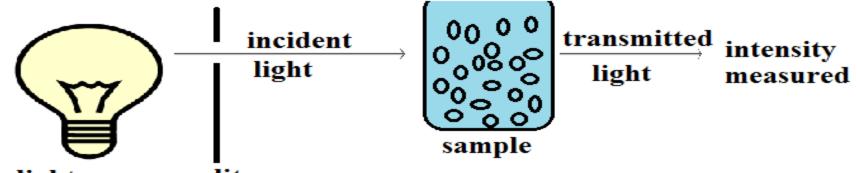
Dispersed particles appear as bright spots in dark back ground.

≻Used to determine zeta potential.

3. Electron microscope:

>Used to measure particle size, shape, structure .

- \geq Radiation source high energy electrons (λ = 0.1A⁰)
- ➤As wave length decreases resolution increases.
- ➢ Particle photographs can be taken.


<u>Turbidity (Ծ)։</u>

This method is used to estimate **concentration** of dispersed particles and **molecular weight** of solute. Equipments used

- 1.Spectrophotometer
- 2.Nephelometer.

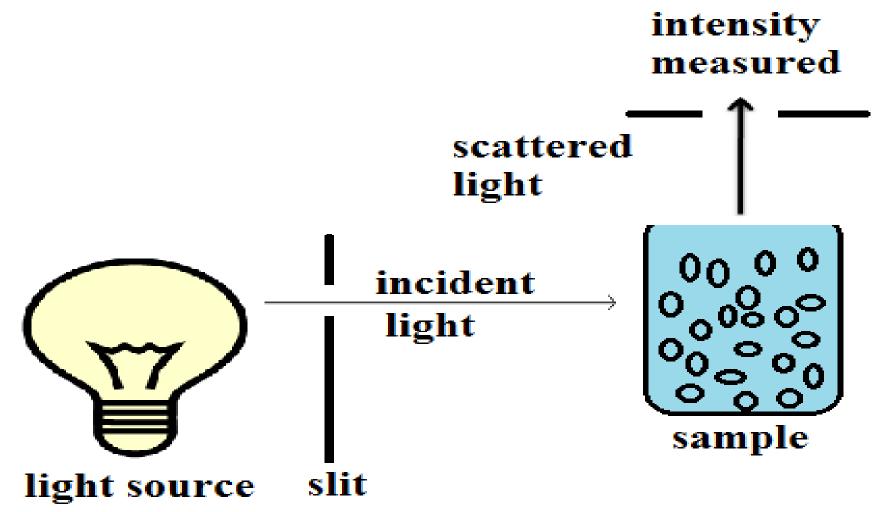
1. Spectrophotometer:

Measures intensity of transmitted light.

light source slit

Turbidity-light intensity relationship

- I0 = intensity of incident light
- I = intensity of transmitted light
- L = length of sample (1 cm)
- T = turbidity

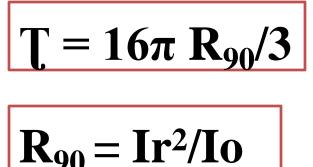

$$I/Io = e^{-TL}$$

lyophobic colloids ==> high turbidity ===> high scattering, low transmitance.

lyophilic colloids ==> low turbidity ===> low scattering, high transmitance.

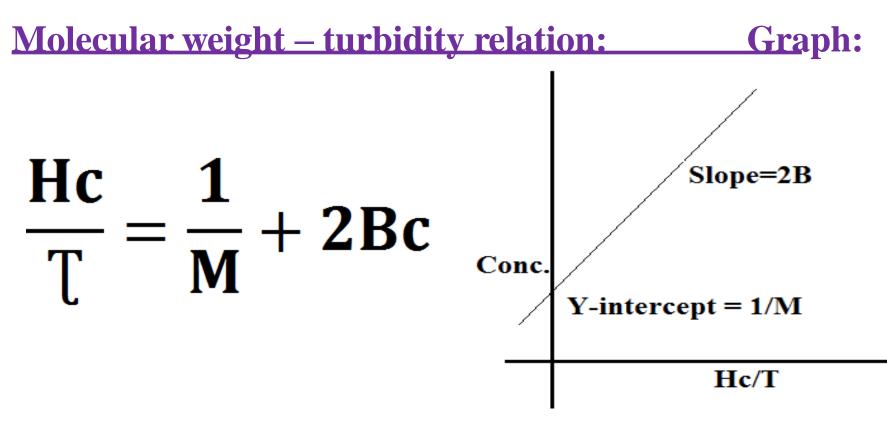
2. Nephelometer:

- \succ Scattered light intensity is measured at 90^o.
- Applicable to lyophilic colloids.


<u>Light scattering – turbidity:</u>

- Used to study proteins, polymers, association colloids, lyophilic sols.
- Used to measure molecular weight of polymers.

Principle:


Light source > dimensions of → turbidity is measured for Wavelength particles scattered light. spherical micelles + light ==> light scattered in all directions

laminar micelles + light ==> adjust in direction of light

I0 = intensity of incident light I = intensity of scattered light R_{90} = Rayleigh ratio T = turbidity r = distance between scattered particle

and point of observation.

 $C = concentration of solute (g/cm^3)$

M = average molecular weight of colloid

- B = interaction constant of solvent-solute system
- H = optical constant depending on refractive index
- (changes with concentration & wavelength of light used)

2. Kinetic properties:

➢Used to detect stability of system, molecular weight of particles, transport kinetics.

Includes Brownian motion, diffusion, sedimentation, viscosity, colligative properties.

Brownian motion:

✓ Robert brown theory states colloidal particles (5µm) continuous random motion b/o thermal energy.
 ✓ In motion they collide with walls, other particles and change their direction, velocity. (light microscope)
 ✓ Particles move against gravitational force.
 ✓ Brownian motion stops with increase in size & viscosity.

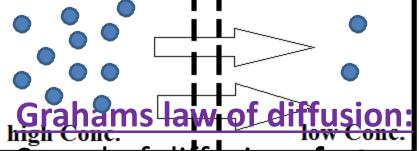
Diffusion :

Colloidal particles of small size pass through the porous plug b/o brownian motion.

Ficks Ist law: states that particles diffuse spontaneously from a region of high concentration to region of low concentration until diffusion equilibrium is attained.

Application: molecular weight determination

 $D = \frac{RT}{6\pi\eta_0 N} \sqrt[3]{\frac{4\pi N}{3MV}}$


D – diffusion experiment η_0 – capillry viscometer V – density determination T = absolute temperature. Π_0 = viscosity of dispersion medium N= avagardos number **M = molecular weight of polymer** V = partial specific volume of particles.

R = ideal gas constant

In **<u>Diffusion experiment</u>** quantity of drug diffused is

 $D_{q} = quantity \frac{d}{dx} diffused D = diffusion coefficient$ S⁴ plane area <math>dx

donar donar donar dtpantime taken for differsion.

Speed of diffusion- fast- crystalloids (salt, acid, base) Speed of diffusion- slow – colloidal substances (gelatin, albumin)- glue.

Sedimentation:

> This is influenced by gravitational force, applicable for particle size > 0.5 μ m.

Stokes law equation – velocity of sedimentation.

 \succ Colloidal particles have brownian motion \rightarrow No

sedimentation

Forced sedimentation – ultra centrifuge.
Applications:

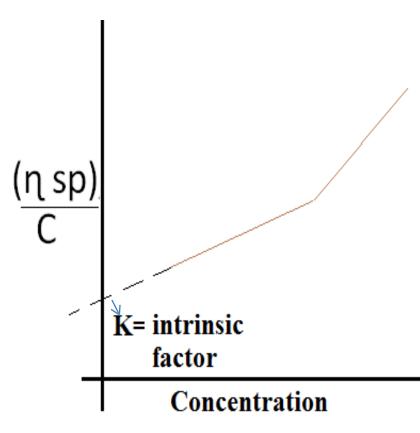
1. Molecular weight estimation

2.Study micellar properties of drug.

Colligative properties:

Only **osmotic pressure** is suitable for measurement of molecular weight of dispersed particles.

<u>Viscocity (ŋ):</u>

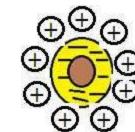

- Affected by many parameters
- 1. Shape of particle Spherical ($\downarrow \eta$), Liner shape ($\uparrow \eta$)
- 2.Affinity of particle to medium Lyophobic (Liner shape $\uparrow \eta$)
- 3.Types of colloid dispersions dispersion medium of Lyophilic ($\uparrow \eta$), Lyophobic ($\downarrow \eta$).
- 4. Molecular weight of polymers proportional to viscosity. **Einstein equation –calculate viscosity.**

η = η₀ (1+2.5φ)

 η = viscosity of dispersion medium η_0 = viscosity of dispersed particles ϕ = volume fraction of particles.

Relative viscosity $(\eta \text{ rel}) = \eta / \eta 0 = 1+2.5\varphi$ Specific viscocity $(\eta \text{ sp}) = \eta / \eta 0 - 1 = 2.5\varphi$ $(\eta \text{ sp}) / \varphi = 2.5\varphi$ $(\eta \text{ sp}) / \varphi = 2.5$ (φ = concentration of particles) $(\eta \text{ sp}) / C = 2.5 = K$ (K = Intrinsic viscosity factor)

٢.



lar weight determination: Km^a nsic viscosity

eter) onstants of polymer, ecular weight of

<u>3. Electric properties:</u> Surface charge:

Dispersed particles have charge on surfact

Dispersed particles added in electrolytic solution forms electrical double layer.

Zeta potential:

- ✓ This is electric potential in the plane of shear of the charged particle.
- \checkmark Used in predicting stability of colloidal dispersion

Electrophoresis:

Used to determine sign & magnitude of zeta potential.
This involves movement of charged particles under the influence of an applied potential difference.

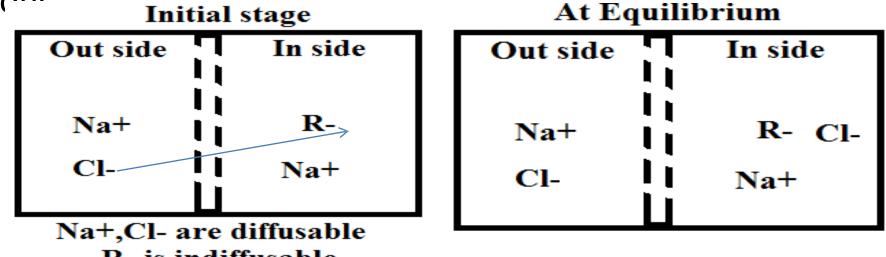
Sign:

Particles move towards anode – colloid (-) charged.

Particles move towards cathode – colloid (+) charged Magnitude:

Rate of migration depends on charge of particle & potential

gradient applied.


Ultra microscope measures magnitude, standardized by particles of known potential (RBC of rabbit).

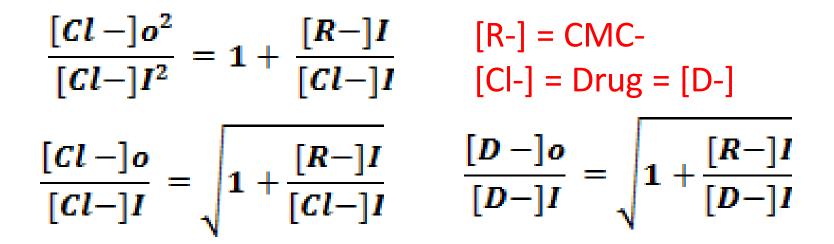
Velocity of particle migration α potential gradient applied V= $\alpha \zeta E$ (zeta) $\zeta = V/E$ dielectric constant and viscosity.

 $\zeta = \frac{V}{E} X \frac{4\pi\eta}{\epsilon}$

DONNAN- MEMBRANE EQUILIBRIUM:

- This principle is used to enhance the absorption of drugs such as sodium salicylate & potassium benzyl penicillin by using **sodium CMC**. (CMC⁻ Na⁺)
- ➢Sodium CMC is anionic pro-electrolyte, non diffusable.
 ➢Sodium CMC + anionic drug →drug diffusable, increase absorption of drug.
- Other ex:- Ion-exchange resins of sulphate & phosphate

R- is indiffusable


At Equilibrium \rightarrow Charge balance \rightarrow Electro neutrality Out side \rightarrow [Na+]o = [Cl-]o In side \rightarrow [Na+]I = [Cl-]I + [R-]I

According to principle of escaping tendency of the

electrolytes concentration on both sides of the membrane

should be same. (outside = inside)

[Na+]o [Cl-]o = [Na+]I [Cl-]I Converting to [Cl-] concentrations. [Cl-]o [Cl-]o = ([Cl-]I + [R-]I) [Cl-]I [Cl-]o² = [Cl-]I (1 + $\frac{[R-]I}{[Cl-]I}$)

Equation helps in selecting appropriate concentration of components.

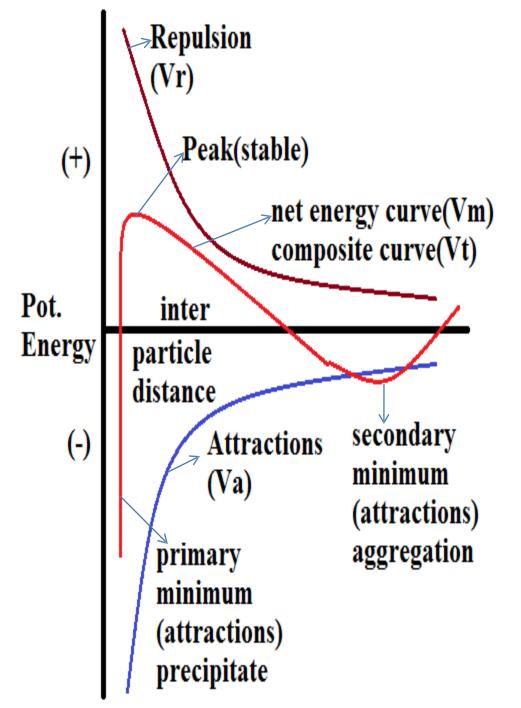
- CASE-1
- If [R-]I/[D-]I=8; then $[D-]o/[D-]I=3 \rightarrow D$ out= 3 D in CASE-2
- If [R-]I/[D-]I=99; then $[D-]o/[D-]I=10 \rightarrow D$ out = 10 D in (GIT) (Blood)

STABILITY OF COLLOIDS:

Good colloidal dispersions should not change until usage. Colloidal dispersion stable (Brownian motion), unstable (Precipitate)

Stability reasons:

- 1.Lyophilic solvent sheath on particles.
- 2.Lyophobic electric charge on particles.


Lyophobic colloids stability:

<u>DLVO theory-</u> Derjaguin, Landau, Verway & Overbeek

➤This theory is based on distance between 2 particles and their interactions

Colloidal particles exhibit brownian motion causing collisions between particles.

Amount of electrolytes control stabilization & Precipitation.

Particle interactions:

1.Vanderwaals attraction forces: Chemical nature, size of particle Attraction curve (Va) 2.Electrostatic repulsive curve: Density, surface charge, thickness of EDL. Repulsion curve (Vr) Zeta potential stable range 20-50 mv. 3.Net energy interactions: Algebraic additions of 2 curves (Vt)

Conclusions:

1.Primary minimum:

Particles close \rightarrow atomic orbital's overlap \rightarrow Pot.

Energy $\uparrow \rightarrow$ Aggregates.

2.Secondary minimum:

Particles separated (1000-2000 A^o) → Attractions

→

Aggregates.

Used in controlled flocculation.

3.Net energy peak:

At intermediate distance $(3-4A^{0}) \rightarrow$ Attractions= Repulsions \rightarrow Brownian motion \rightarrow Stable = Zeta potential (50 mv)

Peak height is proportional to Stability.

INSTABILITY OF LYOPHOBIC COLLOIDS:

Breakage of potential energy barrier leads to precipitation/ agglomeration.

Instability Methods:

1.Reducing height of potential ba

2.Increasing the kinetic energy, reduces potential energy

Instability reasons:

1.Removal of electrolyte (1^o minimum)

2.Addition of electrolyte (2^o minimum)

3.Addition of electrolytes of opposite charge (2^o minimum)

1. Removal of electrolyte (1^o minimum)

Colloids + electrolytes → stable colloidal dispersion Dialysis = remove Electrolytes → Particles coagulate →Settle to bottom.

2.Addition of electrolyte (2^o minimum)

Stable colloidal dispersion + excess electrolyte →
electrolyte Accumulate → instability. **3.Addition of electrolytes of opposite charge (2**⁰

minimum)

Stable colloidal dispersion + electrolyte opposite charge →

attractions between pattre as State at the second at the s

4. Schlitzen-tafrdppositellyrebiarigetlrcglooider(22 ioninirohang)e

Bismuth colloids (+) + Tragacanth colloids (-) \rightarrow Coagulation.

INSTABILITY OF LYOPHILIC COLLOIDS:

Stability – Solvent Sheath Instability – aggregation/ precip Instability reasons:

1.Addition of excess electrolyte

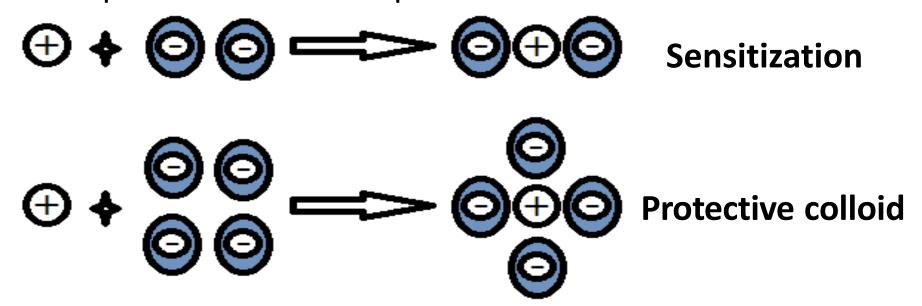
- 2.Addition of oppositely charged colloid
- 3.Addition of non-solvent.

>Addition of excess electrolyte:

Electrolyte normal Conc \rightarrow Zeta potential $\downarrow \rightarrow$ No Coagulation Electrolyte high Conc \rightarrow ions + water \rightarrow No solvent for sheath Hofmeister Rank Order:

States that the precipitating power of an ion is directly related to ability of that ion to separate water molecule from colloidal particle.

N/a+2 Ca+2 N/a+ Cl-Dr-Nl-


➤ Addition of oppositely charged colloid
Gelatin Colloid [+] + Acacia Colloid [-] → Electrostatic
attractive forces → Solvent sheath break → Particles
aggregate.

Addition of non-solvent.

Colloidal Dispersion + Alcohol/Acetone Water(solvent) + Alcohol/Acetone(non-solvent) → Solution. No water, No solvent Sheath → Unstable colloid.

Sensitization & Protective colloidal action:

- 1.Lyophobic colloid + excess electrolyte → charge neutralize → Precipitation.
- 2.Lyophobic colloid + Lyophilic colloid (**low Conc**) \rightarrow Sensitization \rightarrow Add electrolyte \rightarrow Precipitation.
- 3.Lyophobic colloid + Lyophilic colloid (**High Conc**) \rightarrow **Protective colloid** \rightarrow Add electrolyte \rightarrow ions can not reach particle \rightarrow No Precipitation.

The colloids that help in stabilizing other colloids are called **Protective colloids.**

This protective colloidal property is measured in **GOLD NUMBER.**

Ex:

1.Colloidal gold (red) + electrolyte → coagulation (violet)
2.Colloidal gold (red) + Gelatin Colloid → Protective Colloid (red)

Thank you.....

